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The stability of the convective motion of a viscous incompressible  fluid in a channel between pe r -  
meable ver t ica l  planes heated to different t empera tu res  is considered under the assumption of 
homogeneous t r ansve r se  air  blasting. Stability boundaries for  different values of the Prandtl  num- 
be r  Pr  and Peclet  number Pe that charac te r ize  the intensity of t r ansve r se  motion are numerica l ly  
determined.  The resul ts  demonstrate  that t r ansve r se  blasting substantially influences both the 
hydrodynamic instability mechanism and instability due to the growth of the rmal  waves in r flow. 

The stability of steady convective motion between ver t ica l  paral le l  planes heated to different t empera tures  
has been investigated in detail [1-7]. The existence of monotonic-type instability of a hydrodynamical  nature 
and osc i l la tory  type due to the growth of the rma l  waves in the flow was demonstra ted.  It was assumed that the 
channel walls were impermeable  to the substance and that nei ther  suction nor  draining of the fluid f rom the 
boundaries occurred ,  though injection and drawing off of fluid through permeable  boundaries can exert  a sub- 
stantial  influence on the stability of the resul t ing steady motion and may serve as one method of controll ing 
hydrodynamical  and convective instability. It is well known that t r ansve r se  motion leads to a significant in- 
c r ease  in the stabili ty of a laminar  boundary layer  [8, 9] and of plane Poiseuille flow [10, 11]. It was proved 
[12] that t r ansve r se  draining increases  the cr i t ica l  Rayleigh number  that determines the appearance of con-  
vection in a horizontal  layer  heated f rom below. 

w Le tus  consider  a plane ver t ica l  layer  of a viscous incompressible  fluid bounded by the infinite planes 
x =~h, heated to the different t empera tu res  �9 0. Suppose one-dimensional  injection of a fluid at the rate v 0 
occurs  on the surface x = - h  andthat one-dimensional  draining occurs  on the surface x =h at the same rate.  
Thus, the resul t ing steady motion is the superposit ion of a one-dimensional  t r ansve r se  flow on plane-paral le l  
convective flow, 

v::=v o, vy=0; v~=Uo(X), 

where v 0 =const .  

The steady convection equations have the form 

Pe , UO -- TO ~ Opo 
p-q:- Uo -- -- 0--7~ = c, (I.I) 

PeTo = To Pe = vo~h, Pr = 

where u0, To, and P0 are vertical velocity, absolute temperature, and pressure, respectively; Pe is the Peclet 
number that characterizes the intensity of transverse motion, Pr is the Prandtl number, v is the kinematic 
viscosity coefficient, ){ is the thermal-diffusivity coefficient, and c is the separation constant of the variables. 
We introduce h, h2/u, O, gflOh2/u, andp ~flOh, where g is the acceleration of gravity, p is density, and fi is the 
thermal-expansion coefficient, as the units of distance, time, temperature, velocity, and pressure. 

A temperature is specified on the channel boundaries and the vertical component of velocity vanishes, 

ro(--~)=--L To(1)=l, Uo(• (1o2) 
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We add one f u r t h e r  cond i t i on  to  the  above .  Tha t  i s ,  f lu id  flow r a t e  t h r o u g h  a t r a n s v e r s e  channe l  c r o s s  
s e c t i o n  i s  z e r o ,  

+1 

I ~o (x) dx = O. (1.3) 
--'I 

From Eqs. (I.I), taking into account Eqs. (1.2) and (1.3), we find that the temperature distribution 
and distribution of the vertical velocity component of the resulting motion are given by 

T o(x) 1 (e p e x -  chPe); (1.4) ---- s-~7"e 
( 1De Pe) 

u 0 (x) = c 0 (e eex - -  x shPe - -  chPe) + c 1 e V~- "~ --  x sh ~ - -  ch F ' where 

Pr 
Co := Pe~(1 --Pr) shPe ' 

( I shPe) c o chPe -- p-~ 

C 1 ~ - -  
ch Pe _ P r  shP-~-e 

Pr Pe Pr 

In p a s s i n g  to  l i m i t s  we o b t a i n  f r o m  E q s .  (1.4) a l i n e a r  t e m p e r a t u r e  d i s t r i b u t i o n  T o =x  and cub ic  v e -  
l o c i t y p r o f i l e u 0 =  ( x / 6 ) / ( 1 - x 2 ) ,  wh ich  ho lds  f o r  a l a y e r  wi th  i m p e r m e a b l e  b o u n d a r i e s  in the  a b s e n c e  of  t r a n s -  
v e r s e  f lu id  f low ( P e = 0 ) .  The  p r e s e n c e  of a t r a n s v e r s e  v e l o c i t y  componen t  ( P e ~  0) l e a d s  to d i s t o r -  
t i on  of  the  P0 p r o f i l e ,  wh ich  c e a s e s  b e i n g  a l i n e a r  func t ion  of  the  t r a n s v e r s e  c o o r d i n a t e .  A t h e r m a l  
b o u n d a r y  l a y e r  f o r m s  n e a r  one of the  b o u n d a r i e s  at  h igh Pe .  T r a n s v e r s e  m o t i o n  l e a d s  a l so  to d i s -  
t o r t i o n  of  the  s t a t i o n a r y  d i s t r i b u t i o n  of  the  v e r t i c a l  v e l o c i t y  c o m p o n e n t .  Two m e c h a n i s m s  tha t  d e -  
f o r m  u 0 e x i s t  h e r e :  

a) a convec t i ve  m e c h a n i s m  a s s o c i a t e d  wi th  the  d i s t o r t i o n  of  the  s t a t i o n a r y  t e m p e r a t u r e  d i s t r i b u t i o n ;  
b) a h y d r o d y n a m i c a l  m e c h a n i s m  a s s o c i a t e d  wi th  the  i n t e r a c t i o n  of  the  t r a n s v e r s e  flow with  the  c o n -  

v e c t i v e  p l a n e - p a r a l l e l  flow and d e s c r i b e d  b y  the  n o n l i n e a r  t e r m s  of the  N a v i e r - S t o k e s  equa t ion .  

F i g u r e  1 d e p i c t s  s t a t i o n a r y  t e m p e r a t u r e  (T 0) and v e l o c i t y  (u 0) d i s t r i b u t i o n s  fo r  P r  =2 and Pe =3.  
V a l u e s  of  T o and u 0 in the  c a s e  of  i m p e r m e a b l e  b o u n d a r i e s  a r e  i n d i c a t e d  by  a p r i m e  fo r  c o m p a r i s o n .  T r a n s -  
v e r s e  mo t ion  l e a d s  to  a d e c r e a s e  in f low r a t e  and to  a s y m m e t r y  of  the  p r o f i l e  of  the  v e r t i c a l  v e l o c i t y  c o m -  
ponen t .  

w 2. We w i l l w r i t e  equa t i ons  fo r  s m a l l  d i s t u r b a n c e s  of  the  s t a t i o n a r y  t e m p e r a t u r e  and v e l o c i t y  d i s t r i b u -  
t i o n s  in  o r d e r  to  s tudy  the  s t a b i l i t y  of  the  r e s u l t i n g  n o n p a r a l l e l  f lu id  mo t ion .  An a n a l y s i s  d e m o n s t r a t e s  
tha t  (as in the  c a s e  of  flow) a c r i s i s  in the  flow b e t w e e n  i m p e r m e a b l e  b o u n d a r i e s  [13] is  a s s o c i a t e d  with  the  
d e v e l o p m e n t  of  t w o - d i m e n s i o n a l  d i s t u r b a n c e s ,  whose  d e s c r i p t i o n  r e q u i r e s  tha t  we i n t r o d u c e  the  s t r e a m  
funct ion  r z,  t ) ,  c o n n e c t e d  to  the  v e l o c i t y  c o m p o n e n t s  by  the  equa t i ons  

1)x~ ; Vy=0;  Vz~- Ox" 

The s y s t e m  of  e q u a t i o n s  fo r  d i s t u r b a n c e s  in the  s t r e a m  and t e m p e r a t u r e  func t ions  has  the  f o r m  

w h e r e  

0 Pe O O - -  u0 = AA~p - -  a-~'; ~ -  A# + PT- ~ A~p + Gr u 0 ~-z A~p 

0 - 7 - + p ) - - ~  + G r  u 0 -~z + T 0  = AT, 

g~Oh 8 0 ~ Ot 
Gr = ~ is the Grashof number; A ~ ~ + -~z ~. 

(2.1) 

We i n t r o d u c e  d i s t u r b a n c e s  of  the  f o r m  
~(x, z, t ) :  q~(x)e-~+~kz; (2.2) 
T(x,  z, t ) = ~ ( x ) e - ~ + ~  k:, 

w h e r e  ga(x) and �9 (x) a r e  d i s t u r b a n c e  a m p l i t u d e s ,  k is  a r e a l  wave  n u m b e r ,  and X=)~r+Xi is  the  c o m p l e x  
d i s t u r b a n c e  d e c r e m e n t .  The  s t a b i l i t y  b o u n d a r y  is  d e t e r m i n e d  by  the cond i t ion  X r = 0; the  i m a g i n a r y  p a r t  
).i o f  the  d e c r e m e n t  d e t e r m i n e s  t he  p h a s e  v e l o c i t y  of the  d i s t u r b a n c e .  
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We substitute Eq. (2.2) in (2.1), obtaining a sys tem of equations for the disturbance amplitudes, 

~k Gr [u0(~"--  k ~ )  u ~ ]  ~ (~"--  k"-~) (~iv _ 9 ~  ,, Pe ( V ' - -  . . . .  ~:-r + k~q~) - - P T  k~-q/) - - , r  (2.3) 

ik GrPr (u0~ -[- r0~) -- ~.Pr~ = (~" -- k2~) -- Pet'. 

Conditions under which the t empera tu re  and velocity disturbances on the wall vanish lead to the homogene- 
ous boundary conditions 

z(_+i)=~(~l)=s177 =0. (2.4) 

Numerica l  integration was used to solve the charac te r i s t ic  spectral  problem (2.3), (2.4). The sys -  
t em of equations (2.3) for the complex amplitudes ~p and 1" reduces to a sys tem of 12 rea l  f i r s t - o r d e r  dif- 
ferent ial  equations for the rea l  and imaginary par ts  of the functions r  ~ ' ,  cp,, ~p,T, and T' .  Three l inear ly  
independent par t ia l  solutions of this sys tem were constructed using the R u n g e - K u t t a - M e r s o n  method, 
these solutions satisfying the conditions (2.4) at the point x = - l ;  "0-1"- type  conditions for the higher de- 
r ivat ives were also constructed.  An orthogonalization procedure [14] was used to retain the l inear inde- 
pendence of the solutions over  the entire range of integration. The boundary conditions at the right end 
x = 1 of the range of integration lead to charac te r i s t i c  equations that determine the real  and imaginary parCs 
of the decrement  k. 

w I n o r d e r t o p r e s e n t t h e  resul ts  of the calculation we will enumerate the basic  resul ts  of the study 
of the stabili ty of convective flow between impermeable  boundaries .  

Convective flow in a ver t ica l  layer  with impermeable boundaries reveals  two types of instability as 
a function of the value of Pr .  When Pr  <12, the flow and heat t r ans f e r  c r i s i s  is hydrod)mamical and as -  
sociated with the instability of the interface between opposing convective flows. This c r i s i s  is due to an 
increase  in the so-cal led  "standing" dis turbances,  which lead to the formation of a ver t ica l ly  periodic 
chain of immobile eddies at the boundary of the flows. When P r  >t2,  instability is due to ~travelling" dis-  
turbances  in the form of the rma l  waves increas ing in the flow. The phase velocity of these waves is com-  
mensura te  with the velocity of the main flow, while there exist  two waves propagating in the ascending and 
descending flows, respect ively .  These waves have phase veloci t ies  identical in magnitude and lead to the 
appearance of instability at identical Grashof  numbers .  

Such features  involved in the appearance of instability are  basical ly due to the a symmet ry  of the ve:- 
loeity and t empera tu re  profiles of the main fluid motion in the layer  between imperme able boundarie s. 
Standing disturbances with vanishing phase velocity are impossible as in the case of convective flow of a 
fluid with tempera ture-dependent  v iscosi ty .  The hydrodynamical  mechanism of the i~s tabili ty of the in ter -  
face between opposing flows is now associated with disturbances that slowly drift along a ver t ica l  line up- 
wards  in the direct ion of the motion of more  intensive flow. Calculations have demonstra ted that their  
phase veloci ty is near  in magnitude to the veloci ty u =u 1 - u  2, where u~ - u +max and u 2 = Urea x a re  the max-  
imal veloci t ies  in the ascending and descending flows. 

Figure 2 depicts the dependence of the cr i t ica l  (minimal along a neutral  curve) value of the Grashof  
number  G r .  for hydrodynamic- type dis turbances and the corresponding dimensionless  phase velocity 
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C, =2~i,/k, G r ,  on the p a r a m e t e r  Pe for the three values of the Prandtl  numbers  0.5, 2, and 10. T ransve r se  
motion exer ted the s t rongest  stabilizing effect on the development of disturbances.  The cr i t ical  Grashof  
number  for P r = 0 . 5  was roughly three t imes  g rea te r  than for flow with a cubic velocity profile in the case 
of a compara t ive ly  low t r a n s v e r s e  speed (Pr=2}. When Pe > 2.5, G r ,  increases  in proport ion to Pe 2 for  
all these values of the Prandtl  number.  The veloci ty of the cr i t ica l  disturbances increases  with increas ing 
Pe and reaches  a maximal value for  some Peclet  number.  A fur ther  growth in the t r ansve r se  speed leads 
to a decrease  in c , .  The dependence of veloci ty u on Pe for Pr  =2 is depicted in Fig. 2 by a broken line. 
The behavior of u(Pe} is analogous to that of c ,  (Pe), while u is always g rea te r  in magnitude than c , ,  but 
the difference between u and c ,  dec reases  with decreas ing Prandtl  number.  

The calculations demonst ra ted  that the cr i t ica l  wave number  k ,  de terminin~the  wavelength of the 
most  dangerous dis turbances remains  pract ica l ly  invariant throughout the hydrodynamical branch of the 
instability. A variat ion in the Pe and P r  pa rame te r s  resul ted in k , ~ l . 4  in this range. Let us consider  
instabil i ty induced by a growth of the rma l  waves. The basic difference f rom the case of impermeable 
boundaries [4] is that no "combining" of the rea l  levels with the generation of a pair  of oscil lating d is tur -  
bances occurs  in the decrement  spec t rum of k(Gr). Asymmet ry  of the T O and u 0 profi les in the case of 
the homogeneous t r ansve r se  velocity resul ts  in the fact that the rmal  waves propagating upwards and down- 
wards cease being equal, have phase velocit ies differing in magnitude, and different instability boundaries 
cor respond  to them. The influence of homogeneous t r ansve r se  motion on the stability boundary and the 
cha rac te r i s t i c s  of the c r i t ica l  dis turbances are shown in Fig. 3, where dependences are given for the cr i t ical  
Grashof  numbers  Gr, phase velocit ies c , ,  and wave numbers  k ,  for the rmal  waves propagating in the posi-  
tive direct ion of the z axis (solid curves) .  The dependence of G r ,  (Pc) for the rmal  waves with negative 
phase velocity is depicted by broken curves .  The dependences G r ,  (Pc) for "positive" waves have a mini-  
mum at approximately Pe =1.6 for P r = 1 5  and 30 and when Pe =1.9, for P r = 8 .  Thus, flow becomes less 
stable at low t r ansve r se  velocit ies than in the case of impermeable boundaries for  the rmal  waves with 
positive phase velocity.  Flow stability increases  with s t rong fluid suctions and drains on the boundaries 
and G r ,  increases  in proport ion to Pe 2 when Pe > 5.5. 

An increase  in stabili ty for  all values of Pe is observed and the disturbances are "deflated" f rom the 
descending flow in the case of the rmal  waves with negative phase velocity. 

The curves  for  c ,  (Pc) demonstrate  that the phase velocity of the cr i t ica l  disturbances somewhat in- 
c r e a s e s  with increas ing t r ansve r se  velocity. The cr i t ical  phase velocity sharply increases  in the range 
of values of Peclet  numbers  in which the destabilizing influence of the draining is replaced by a stabilizing 
influence. It becomes nea r  in magnitude to the maximal  velocity of the ascending flow. An increase in the 
c r i t ica l  wave number  k ,  with increasing Pe is observed for the rmal  waves with cr i t ica l  phase velocity in 
cont ras t  to the hydrodynamieal  instability mode for thermal  waves with positive phase velocity. That is, 
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the wavelength of d i s tu rbances  defining a c r i s i s  of the given flow d e c r e a s e s  with increas ing  t r a n s -  

v e r s e  veloci ty .  

Resul ts  of the calculat ion demons t r a t ed  that  weak t r a n s v e r s e  draining signif icant ly d e c r e a s e s  the 
l imit ing P r .  at which such instabi l i ty  in the f o r m  of inc reas ing  t h e r m a l  waves ,  appea r s .  While P r ,  =11.4 
[4] in the case  of i m p e r m e a b l e  boundar ies  (Pe =0), we obtain P r ,  =5 for  Pe =1 (we a re  bear ing  in mind 
a wave with posi t ive phase velocity).  As before ,  there  exis t  two different neut ra l  cu rves ,  one of which 
d e t e r m i n e s  the instabi l i ty  region re la t ive  to hydrodynamica l  d i s tu rbances ,  and the other ,  r e la t ive  to t h e r m a l  
waves  for  all P r  > 5. 

Strong t r a n s v e r s e  draining leads to qual i ta t ively new resu l t s  in the region of low and med ium values 
of the Prandt l  number .  Figure  4 depicts  neu t ra l  curves  on the k and Gr  planes and phase ve loci t ies  along 
neu t ra l  cu rves  for  s e v e r a l  values  of the prandt l  number .  The Peclet  number  was a s sumed  fixed and equal 
to  3. A new ins tabi l i ty  mode is obtained as a r e su l t  of the continuous deformat ion  of the single neu t ra l  
curve as the Prandt l  number  i n c r e a s e s ,  as in the case  of convect ive flow induced by internal  heat  sources  
[16]. When P r = l . 1 ,  Gr(k) cons is t s  of two neut ra l  cu rves  that  continuously pass  into each other .  The curve 
has two m i n i m a  and we may  cor responding ly  speak  of two types  of instabil i ty.  A fu r the r  inc rease  in P r  
leads  to a division of the ins tabi l i ty  region and the format ion  of different  neu t ra l  cu rves ,  one of which ( shor t -  
wave) de t e rmines  the instabi l i ty  region of hydrodynamical  d i s tu rbances ,  while the o ther  (long-wave) d e t e r -  
mines  the "pOsitive" t h e r m a l  waves ,  a s soc ia ted  with the mos t  dangerous dis turbance cor responding  to an 
absolute m in im um  on the neu t ra l  cu rves .  

Le t  us now presen t  a s u m m a r y  of data  on the s tabi l i ty  boundary in the case  of one-d imens iona l  t r a n s -  
v e r s e  draining.  The dependence of G r .  on the Prandt l  number  is depicted in Fig. 5 for  given values  of the 
Pecle t  number .  The broken cu rves  co r r e spond  to s tabi l i ty  boundar ies  re la t ive  to hydrodynamica l  d i s tu r -  
bances  and t h e r m a l  waves  in the case  of i m p e r m e a b l e  boundar ies .  Fluid draining and suction on the botmd- 
a r i e s  lead to flow destabi l izat ion re la t ive  to t h e r m a l  waves for  Pe =1.3. On the o ther  hand, flow stabi l i ty  
re la t ive  to t h e r m o d y n a m i c a l  d i s turbances  i n c r e a s e s .  A Strong inc rease  in s tabi l i ty  on the hydrodynamica l  
b ranch  in the region of low Prandt l  numbers  is due to our  se lec t ion of the c h a r a c t e r i s t i c  p a r a m e t e r s  (Pe = 
const) .  The ra t io  P e / P r  =Re (the Reynolds number  is de te rmined  in t e r m s  of the t r a n s v e r s e  velocity) is 
high at low Pr .  As has been prev ious ly  p roved  [16], an inc rease  in Re, even in the hydrodynamica l  f o rmu la -  
t ion,  leads  to flow stabi l izat ion.  The broken  pa r t  of the curve for  Pe =3 r e f e r s  to the shor t -wave  min imu m 
on the single neut ra l  curve  (cf. Fig. 5). 

In conclusion,  I wish to e x p r e s s  my  apprecia t ion to E. M. Zhukhovitskii  for  superv i s ing  the study, 
and G. Z. Gershuni  for  useful  d iscuss ion  of the r e su l t s .  
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